

MARNET, Sea State Monitoring Network and Automated Data Quality Control of the BSH - Updates

NOOS annual meeting 03.12.2021, virtual

Outline

- News from MARNET
- 2. Updates about sea state measuring stations
- 3. New sea state data portal
- 4. Automated data quality control and its performance
- 5. Summary & Outlook

MARNET

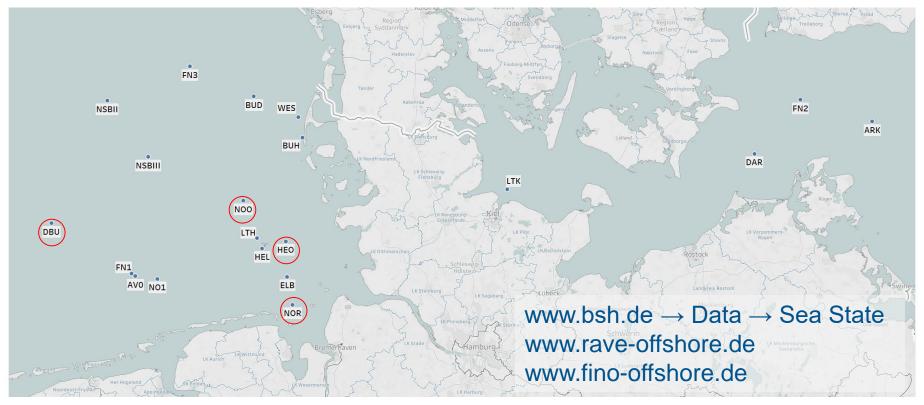
Parts of MARNET

- MARNET Stations
- 2. FINO platforms
- 3. RAVE stations and co-operations
- 4. Hydroacoustic measurements
- 5. German Bight inner part

New developments

- 1. Monitoring buoy (LT81, North Sea)
- 2. Sparebuoy (Baltic Sea)

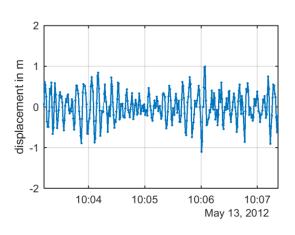
Fixed Monitoring Stations German Bight



BUNDESAMT FÜR SEESCHIFFFAHRT UND

HYDROGRAPHIE

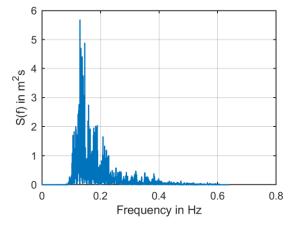
Sea State Measuring Stations

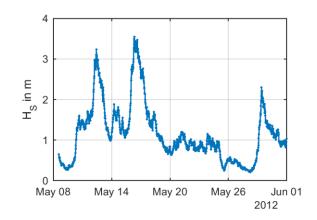

19 stations = 17 BSH (3 FINO and 6 RAVE) + 2 LKN/Hereon Update interval = 30 min

Instruments and Parameters

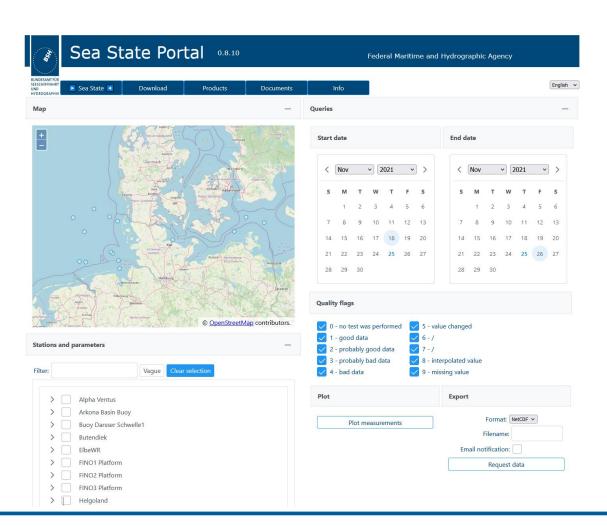
Waverider Buoy

Heave

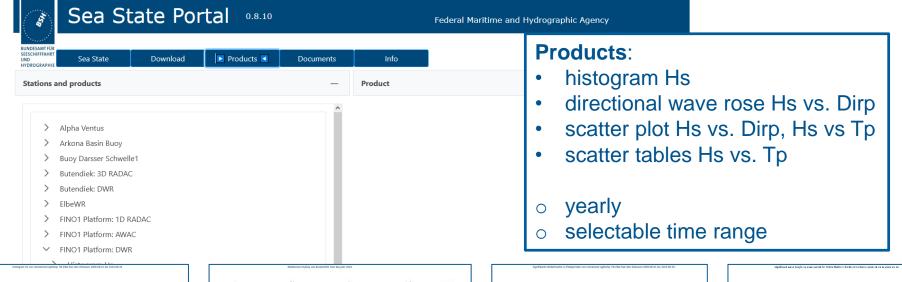

Acoustic Doppler Profiler

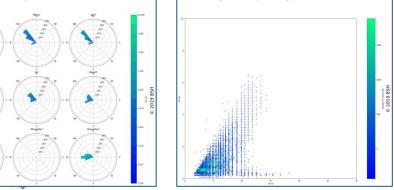

Directional Radar

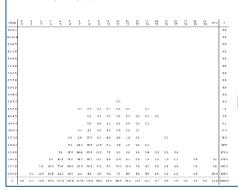
Wave Radar

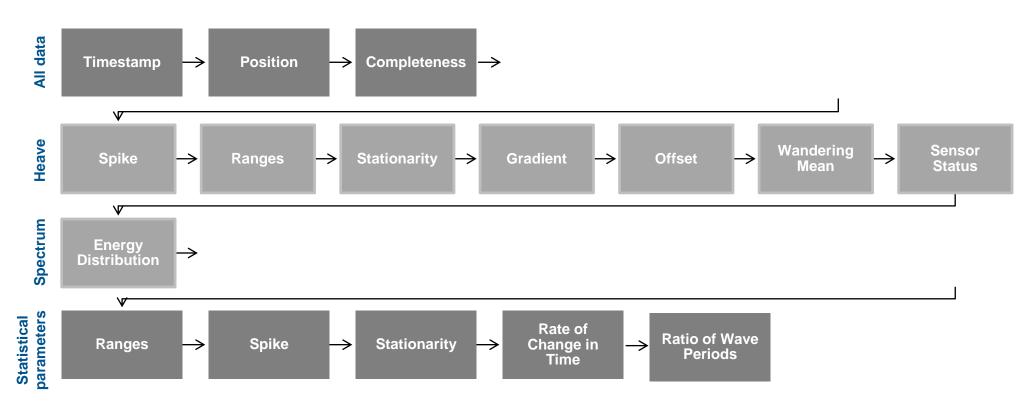

Power Density Spectrum

Aggregated Parameters




- The data portal is live since 01.02.2021
- So far we have 87 registered users


For more information and how to gain access, please contact seegangsportal@bsh.de or www.bsh.de → Data → Sea State



- Copernicus (2020)
 - http://www.marineinsitu.eu/documentation/
- IOOS / QARTOD (2019)
 - https://ioos.noaa.gov/project/qartod/
- Christou, M. and Ewans, K. (2014). "Field Measurements of Rogue Water Waves." Journal of Physical Oceanography 44(9): 2317-2335.
- SeaDataNet (2010)
 - https://www.seadatanet.org/Standards/Data-Quality-Control

Automated Data Quality Control (Real-Time)

Passing on the test results via the 16-digit detailed quality flag.

Qualityflags

Code	Definition
0	No QC was performed
1	Good data
2	Probably good data
3	Bad data, that is potentially correctable
4	Bad data
5	Value changed
6	
7	Nominal value
8	Interpolated value
9	Missing value

- COPERNICUS
- SeaDataNet
- OceanSITES
- Argo

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

12

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

Department M2 Ocean Physics and Climate

Real-Time Data Quality Control (DQC)

In Situ Surface Waves

Version 1.3 of September 2021

For more information please contact seegangsportal@bsh.de

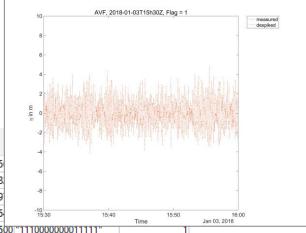
Sample:

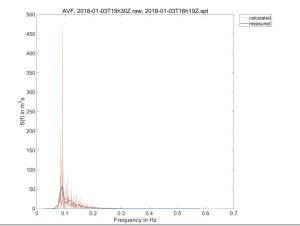
Station: alpha ventus

Sensor: directional waverider buoy (DWR)

Year: 2018

- Data Availability:
 - 100.0 % / 17520 measurements (zero-crossing parameters)
 - 99.93 % / 17508 measurements (spectral parameters)
- Ratio of bad data (flag=4): ~2 % (mostly spikes)
- → How many falsely detected events (false positives) are there?


BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE


Station: alpha ventus

Sensor: directional waverider buoy (DWR)

Year: 2018

1	2	3	4	5	6	7	8
Time	VHM0	dqf_VHM0	fqf_VHM0	VTPK	dqf_VTPK	fqf_VTPK	VTM02
201801031120	3.2800	"1910000000011110"	1	7.6900	"1910000000011111"	1	5.55
201801031150	3.6100	"1910000000011110"	1	8.3300	"1910000000011111"	1	5.88
201801031220	3.4600	"1910000000011110"	1	8.3300	"1910000000011111"	1	5.79
201801031250	3.6700	"1110000000011110"	1	8.3300	"1110000000011111"	1	6.15
201801031320	3.6600	"1110000000011110"	1	10	"1110000000011111"	1	6.250
201801031350	3.9600	"1110000000011110"	1	10	"1110000000011111"	1	6.45
201801031420	5.1400	"1110000000011110"	1	11.1100	"1110000000011111"	1	7.40
201801031450	5.1900	"1110000000011110"	1	11.7600	"1110000000011111"	1	7.69
201801031520	5.2900	"1110000000011110"	1	11.7600	"1110000000011111"	1	7.69
201801031550	5.1700	"1110000000011110"	1	11.1100	"1110000000011111"	1	7.54
201801031620	5.7900	"1110000000011140"	4	11.1100	"1110000000011111"	4	7.84
201801031650	11.3900	"1110000000014140"	4	25	"1110000000014141"	4	12.90
201801031720	5.7800	"1110000000011110"	1	10.5300	"1110000000011111"	1	7.69
201801031750	5.5700	"1110000000011110"	1	11.1100	"1110000000011111"	1	7.54
201801031820	5.9700	"1910000000011110"	1	10.5300	"1910000000011111"	1	7.54
201801031850	5.2400	"1910000000011110"	1	10	"1910000000011111"	1	7.27
201801031920	4.5400	"1910000000011110"	1	10.5300	"1910000000011111"	1	6.78
201801031950	4.2400	"1910000000011110"	1	10.5300	"1910000000011111"	1	6.34

Preliminary Results

- Overall ~35% of the bad data considered are false positives.
- Particularly sensitive parameters are:
 - Hmax (53% false positive), Tp (49% false positive) and THmax (35% false positive)
- Reasons for bad data:
 - storms (spikes in Hs, Hmax)
 - very low sea states (spikes in Tp, THmax)
 - During maintainance work on the sensors
- Reasons for falsely detected bad data:
 - Good values can be falsely detected as bad data if they are right next to spikes

Summary & Outlook

- Approx. 2 % of the waverider buoy measurement is flagged as bad data.
- ~35% of the bad data considered are false positives.
 - This is an estimate and could vary by year, station and sensor. This needs to be investigated more.
- Implement quality control for heave and spectral data
- Include heave and spectral data in the sea state portal
- Include current data and sea level data (open sea) in the sea state portal

References

- Christou, M. and K. Ewans (2014). "Field Measurements of Rogue Water Waves." Journal of Physical Oceanography 44(9): 2317-2335.
- Copernicus Marine In Situ Team (2020). Copernicus In Situ TAC, Real Time Quality Control for WAVES. CMEMS-INS-WAVES-RTQC. https://doi.org/10.13155/46607
- IOOS (2019). Manual for Real-Time Quality Control of In-Situ Surface Wave Data. A Guide to Quality Control and Quality Assurance of In-Situ Surface Wave Observations. QARTOD.

SeaDataNet (2010). Data Quality Control Procedures.

Thank you very much!

